

Fiche technique GJS 500 Désignation

🙆 Norme AFNOR : FGS 500-7

O Norme EN : GJS 500-7

Norme DIN : EN-JS-1050

Description

La GJS 500-7 est une fonte sphéroïdale (ou fonte à graphite sphéroïdal, dite fonte ductile ou nodulaire), alliant une bonne résistance mécanique à une excellente ductilité. Elle est souvent utilisée en remplacement de l'acier pour des pièces moulées, notamment dans l'automobile, l'hydraulique, les travaux publics ou l'énergie.

Composition chimique

Propriété	Valeur
Carbone (C)	3,4 - 3,9 %
Silicium (Si)	2,2 - 2,8 %
Manganèse (Mn)	≤ 0,5 %
Soufre (S)	≤ 0,02 %
Phosphore (P)	≤ 0,08 %
Magnésium (Mg)	~0,03 - 0,06 %
Fer (Fe)	complément

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	170 - 230
Résistance à la traction (Rm)	≥ 500 MPa
Limite d'élasticité (Re)	≥ 320 MPa
Allongement (A%)	≥ 7 %
Résilience (KCV)	~8 - 12 J (à température ambiante)

Propriétés physiques

Propriété	Valeur
Densité	~7 200 - 7 300 kg/m³
Module d'élasticité	~170 000 MPa
Conductivité thermique	~35 - 45 W/(m·K)
Température de fusion	~1 150 - 1 250 °C
Dilatation thermique	~11 µm/m⋅K

Traitements thermiques

Recuit : améliore la ductilité (si besoin)

Normalisation : possible pour homogénéisation

Traitements de surface

Peinture industrielle : standard pour protection

Revêtements : zinc, nickel, ou autres selon application

Soudabilité

Possible avec des précautions : préchauffage, métal d'apport adapté, refroidissement lent

Applications courantes

- Automobile : bras de suspension, disques, carters renforcés
- Mydraulique : corps de vannes, pompes
- Énergie : supports, boîtiers, bâtis techniques
- Génie civil : pièces de fonderie structurelles

Propriétés et avantages

- Excellente ductilité pour une fonte
- **l** Bonne résistance mécanique
- Bon rapport performance/prix
- Bonne coulabilité
- Remplace parfois l'acier moulé